Mining for low-nitrogen tolerance genes by integrating meta-analysis and large-scale gene expression data from maize

Journal: Euphytica November 2015, Volume 206, Issue 1, pp 133-133

Author: Bowen Luo, Haitao Tang, Hailan Liu, Shunzong Su, Suzhi Zhang, Ling Wu, Dan Liu, Shibin Gao


Nitrogen (N) is the most important macronutrient for plant growth and development. Hence, understanding genetic architectures and functional genes involved in the response to N deficiency can greatly facilitate the development of low-N-tolerant cultivars. In this study, we collected 212 quantitative trait loci (QTL) of agronomically important traits under low-N stress conditions in maize. We then identified 21 consensus QTL (cQTL) strongly induced for low-N tolerance after excluding overlapping cQTL containing QTL simultaneously identified in meta-analyses of studies performed under other environmental conditions. Among the 21 cQTL, 30 candidate maize genes were identified from maize large-scale differential expression data derived from analyses of low-N stress, and the 12 most important maize orthologs were identified using homologous BLAST analyses of genes with known functions in N use efficiency in model plants. Furthermore, maize orthologs associated with low-N tolerance and metabolism were also predicted using large-scale expression data from other model plants. The present genetic loci and candidate genes indicate the molecular mechanisms of low-N tolerance in maize and may provide information for QTL fine mapping and molecular marker-assisted selection.